
Approximate Nearest Line Search in High Dimensions

Sepideh Mahabadi
MIT

mahabadi@mit.edu

Abstract

We consider the Approximate Nearest Line Search (NLS) problem. Given a set L of N lines in
the high dimensional Euclidean space Rd, the goal is to build a data structure that, given a query point
q ∈ Rd, reports a line ` ∈ L such that its distance to the query is within (1+ε) factor of the distance of the
closest line to the query point q. The problem is a natural generalization of the well-studied Approximate
Nearest Neighbor problem for point sets (ANN), and is a natural first step towards understanding how to
build efficient nearest-neighbor data structures for objects that are more complex than points.

Our main result is a data structure that, for any fixed ε > 0, reports the approximate nearest line
in time (d + logN + 1/ε)O(1) using O(N + d)O(1/ε2) space. This is the first high-dimensional data
structure for this problem with poly-logarithmic query time and polynomial space. In contrast, the best
previous data structure for this problem, due to Magen [16], required quasi-polynomial space. Up to
polynomials, the bounds achieved by our data structure match the performance of the best algorithm for
the approximate nearest neighbor problem for point sets.

1 Introduction
The Nearest Neighbor problem is a fundamental geometric problem which is of major importance in several
areas such as databases, information retrieval, pattern recognition and computer vision. The problem is
defined as follows: given a collection of N points, build a data structure which, given any query point q,
reports the data point that is the closest to the query. A particularly interesting and well-studied instance is
where the data points live in a d-dimensional space under some (e.g., Euclidean) distance function. There
are several efficient algorithms known for the case when the dimension d is low (e.g., up to 10 or 20),
see [18] for an overview. However, despite decades of intensive effort, the current solutions suffer from
either space or query time that is exponential in d. In fact, for large enough d, in theory or in practice,
they often provide little improvement over a linear time algorithm that compares a query to each point from
the database. Fortunately, faster algorithms can be obtained by resorting to approximation (e.g., [6, 13, 12,
15, 10, 14, 9, 8, 17, 1, 2, 4], see also surveys [19] and [11]). In this formulation, the algorithm is allowed
to return a point whose distance from the query is at most 1 + ε times the distance from the query to its
nearest point. The current results for ANN in Euclidean space answer queries in time (d log(N)/ε2)O(1)

using (dN)O(1/ε2) space [15, 12]. Other algorithms, with slower query times but lower space bounds are
available as well.

The approximate nearest neighbor problem generalizes naturally to the case where the database objects
are more complex than simple points. Perhaps the simplest generalization is where the data items are repre-
sented not by points but by lines or higher-dimensional flats (affine subspaces). Lines and low-dimensional
flats are used to model data under linear variations [7], i.e., model data sets where the objects are linearly
dependent on a small set of unknown parameters. For example, images under varying light intensity can be
modeled by varying the light gain parameter, so the space of resulting images spans a one-dimensional line.

However, despite the importance of the problem, we are aware of only two results for the high dimen-
sional variant of the problem (finding an approximate nearest k-flat) [7, 16]. The first algorithm does not
provide multiplicative approximation guarantees, although it does provide some alternative guarantees and
has been validated by several experiments on computer vision data sets. The second algorithm, due to
Magen, provides provable guarantees and fast query time of (d + logN + 1/ε)O(1). However, the space
requirement of the algorithm is quasi-polynomial, of the form 2(logN)O(1)

.

Our result. In this paper, we consider the nearest subspace problem for the case of lines, i.e., 1-flats.
Specifically, we are given a set L of N lines in the d-dimensional Euclidean space Rd. The goal is to build
a data structure that, given a query point q ∈ Rd, if the closest line `∗ ∈ L has distance r from the query
point, then it reports a line ` ∈ L with distance at most (1 + ε)r from q. We show:

Theorem 1.1. For any sufficiently small fixed ε > 0, there exists a data structure using O(N + d)O(1/ε2)

space, and an algorithm that given a query point q, reports a (1 + cε)-approximate nearest line with proba-
bility at least 1− 6

logN in time (d+ logN + 1/ε)O(1).

The performance of our data structure matches, up to polynomials, the performance of the best known data
structure for the approximate point nearest neighbor (ANN) problem [15, 12]. In particular, it shows that
the exponential dependence on the dimension can be avoided for this problem, which mimics the situation
for the point data sets. Furthermore, the result is obtained via reductions to ANN, thereby showing that,
in a sense, the problem over lines is not harder than the problem over points. 1 To the best of our knowl-
edge, our result provides the first algorithm with poly-logarithmic query time and polynomial space for the
approximate nearest neighbor problem for objects that are more complex than simple points.

1We note that the reductions to ANN used in this paper are randomized. However, the best algorithm for ANN for point sets
is randomized as well.

1

Related work. In addition to the results in [7, 16], we also note that the dual variant of the problem has
been considered in the literature. In the dual problem, the query is a k-dimensional flat for some small value
of k, and the data set consists of points. For the case when the query is a line, i.e., 1-flat, Andoni et. al.
[3] provided a data structure with query time of O(d3N0.5+t) and space of d2NO(1/ε2+1/t2) for any desired
t > 0. We also note that in low dimensions several approximate algorithms for general polytope membership
are known [5]. However, those algorithms have query time and space exponential in the dimension and
therefore, our results are specially interesting in high dimensions.

1.1 Overview of the Algorithms
In this section we give an overview of the difficulties arising when designing an algorithm for high dimen-
sional lines, and the techniques that address them. On a high level our algorithms are obtained by reductions
to approximate nearest neighbor over a set of points. They employ three basic reduction types, also referred
to as modules. They are depicted in Figures 1, 2 and 3.

Figure 1: Net

Net Module The simplest reduction proceeds by discretizing each line into a
set of points by sampling regularly spaced points along the line. Clearly, given
a sufficient sampling density, the nearest sample point identifies the approxi-
mately closest line. However, the required sampling density might be large,
depending on the line configuration. First, in an unbounded region, the total
number of samples we would need is infinite. Second, even in a bounded re-
gion, if the two lines are parallel and their distance is small, then the total num-
ber of samples we would need could be very large, since the query point could
lie anywhere in the gap between the lines. Fortunately, in this case we can use a
reduction of the second type.

Figure 2: Parallel

Parallel Module We say that two lines `1, `2 are almost parallel if sin(α) =
O(ε) where α is the angle between `1 and `2. Consider the case where a set of
lines are pairwise almost parallel. In this case we create a set of hyperplanes
that are perpendicular to one of the lines. For each hyperplane, an ANN data
structure is created for the point set which is the intersection of the lines with that
hyperplane. Then, during the query time, the query point is also projected on
the nearest hyperplane and uses the corresponding ANN data structure. It can be
seen that the distance between the projected query point and the nearest point
on the hyperplane is approximately equal to the distance between the actual
query point and the corresponding line, so again the problem is reduced to ANN.
However, the density of the hyperplanes needed to assure the accuracy depends
on the angles between the lines. Also, for unbounded regions, unless the lines
are exactly parallel, the total number of hyperplanes needed is unbounded.

Figure 3: Unbounded

Unbounded Module Both of the aforementioned reductions can only be used
for bounded regions. To complement them, the third reduction is used to bound
the search region. Let B(o, r) be a ball intersecting all lines, and let R = r

εδ
where δ < ε so that R > r (δ identifies the accuracy of the module). We define
P to be the set of intersections of the lines with the surface of the (larger) ball
B(o,R). Then we build an ANN data structure for P .

Given a query point q, we proceed as follows. If the query point lies within
the ball B(o,R), then the problem can be solved using net module, i.e., by
discretizing the parts of the lines contained in that ball. If the query point lies

2

outside of B(o,R), we project it on the surface and find the approximate nearest neighbor using the data
structure. We show that the projection approximately preserves the order of the distances between the query
q and any pair of lines `1 and `2 s.t. sin angle(`1, `2) ≥ δ , i.e., whose angle has sin value greater than δ.
This allows us to either find a true approximate nearest line, or else find a line ` whose angle is close to the
true nearest line `∗ (i.e. sin angle(`∗, `) < δ). Then we can further restrict our search to lines whose angles
are close to ` and use the Parallel module to find the approximate closest line among them.

Outline of Algorithms Our main algorithm consists of two procedures: Almost Parallel Nearest Line
Search (APNLS) and Nearest Line Search (NLS). APNLS solves the problem for the case where all lines
are almost parallel to each other. On the other hand, NLS solves the problem for the general configuration of
lines and uses APNLS as a subroutine. Both of these algorithms are recursive and use random sampling in
the following manner. At each level of recursion, to solve the problem over a set S of n lines, we first solve
the problem over a randomly chosen subset T of lines of size n/2. With high probability, one of the log n
closest lines to the query in the set S is sampled in the set T . Since the recursive step returns a (1 + O(ε))
approximate closest line, the returned line (say ` ∈ T) has the property that at most log n lines in S \ T are
much closer (closer by a factor of (1−Θ(ε)) to the query point than `. After the recursive step, the algorithm
performs log n improvement steps. Given a line ` ∈ S with distance x to the query point, the improvement
step returns another line that is closer to the query point. Therefore, after log n steps, the algorithm finds
the approximate closest line to the query point. The main difficulty lies in the improvement step. In the
following, we sketch the improvement step for each of the two algorithms.

Improvement step of NLS We are given a line ` ∈ S and the goal is to find another line `′ ∈ S which is
closer to q than `. Suppose that the nearest line `∗ is not almost parallel to `, i.e., sin angle(`, `∗) = Ω(ε).
Let x be the distance of ` to the query point q. Therefore all lines that are candidates for improvement
intersect the ball B(q, x). This ball is a bounded region, so if it was specified in advance, we could apply
the net module. However the query point q, and therefore the ball B(q, x) is not known to the data structure
in advance.

Instead, we construct a set of balls B of polynomial size that depends on the input lines alone. The set
B has the following property: for each query point q and a line ` with distance x to q, there exists a ball of
radius x/εO(1) in B that contains all lines that are not almost parallel to ` and their distance to q is at most
x. Furthermore, this ball can be retrieved in sublinear time. For each ball in B, we create a net module of
polynomial size inside of it with sufficient density, as well as an unbounded module outside of it. Then q is
either inside the ball (in which case we use the net module to find a closer line), or it lies outside of the ball
(and we use the unbounded module to find the approximate closest line).

We remark that our construction of the set of balls, B, relies on the fact that `∗ is not almost parallel to `.
If two lines are not almost parallel, then the lines diverge quickly from their “intersection” (the pair of points
on the lines which have the minimum distance from each other). Thus if we know that the candidate lines
for improvement are within distance at most x of q (and thus within distance at most 2x of `), then their
intersections with ` cannot be farther than O(x/ε) from q′ (projection of q on `). This helps us in designing
the set of balls B. More formally, we can have the lines sorted based on the position of their intersection
with the line ` and only retrieve the ones which are within [−O(x/ε), O(x/ε)] of q′. However this property
does not hold for the case of almost parallel lines.

Improvement step of APNLS We first partition the space Rd into O(n2) parts using O(n2) hyperplanes
perpendicular to the line ` so that we get the following properties. First, in each part, there is a unique
ordering for the lines based on their projective distance 2 from `. Then no matter where the query falls, we

2We will define the notion of distance we use here, later in section 6.1.

3

can retrieve the set of relevant lines (which are the lines within distance O(x) of `). Second, in each part, as
we move along ` the projective distance of any pair of lines is monotone. As a consequence, in each part the
minimum ball intersecting a set of lines has its center on the boundary of the part.

For each part we come up with a polynomial number of concentric balls of different radii. We build an
unbounded module for each ball and a set of parallel modules for each region between any two successive
balls. Given the query point, we find the two successive balls B1, B2 that the query point falls in between.
We first use the unbounded module of the inner ball B1 to differentiate between the candidate lines whose
pairwise angle have sin value greater than some value δ (where δ depends on the radius of B1). Suppose the
result of this phase is `. We then use the parallel modules to differentiate between the lines whose pairwise
angle with ` have sin value smaller than δ. Further we can show that for each part a polynomial number of
unbounded modules and parallel modules suffices.

2 Definitions
Let L be a set of N lines in the d dimensional Euclidean space Rd and let q ∈ Rd denote the query point.
3 Let dist be the Euclidean distance. This induces the distance between two sets of points S1 and S2
defined as dist(S1, S2) = minp∈S1,p′∈S2 dist(p, p′). We also define the distance between a point and a line
dist(p, `) = minp′∈` dist(p, p′) and the distance between two lines dist(`, `′) = minp∈`,p′∈`′ dist(p, p′).

Definition 2.1. Approximate Nearest Neighbor We define ANN(P, ε), for any point set P and error pa-
rameter ε, to be the Approximate Nearest Neighbor data structure constructed for P , with error parameter
ε. Also we let ANNP (q) denote the approximate nearest point found by ANN(P, ε) given the query point
q. Moreover, we let S(n, ε), T (n, ε) and CT (n, ε) (respectively) denote the space bound, query time and
data structure construction time (respectively) used by ANN(P, ε) for |P | = n.

Furthermore, for a set of lines S, we define `∗S to be the line in S that is closest to the query point q.
Also for a point p, we use `p, to denote the line that p lies on, splitting the ties arbitrarily. It should be clear
from the context what is the ground set for choosing `p.

Let B(o, r) denote the ball of radius r centered at o, i.e., B(o, r) = {p ∈ Rd|dist(o, p) ≤ r}, and let
C(o, r) denote the surface of the ball B(o, r), i.e., C(o, r) = {p ∈ Rd|dist(o, p) = r}. We also refer to it
as a sphere. Moreover we define the angle between two lines `1 and `2 to be the smaller of the two angles
between them, and we denote it by angle(`1, `2).

Definition 2.2. For any two lines `1 and `2, and any value of δ ≤ ε, we have the following defini-
tions. `1 and `2 are δ-close (strictly δ-close, respectively) to each other if we have sin angle(`1, `2) ≤ δ
(sin angle(`1, `2) < δ, respectively). Otherwise if sin angle(`1, `2) ≥ δ (sin angle(`1, `2) > δ, respec-
tively), we say that the lines are δ-far (strictly δ-far, respectively) from each other. Also we say that the two
lines are almost parallel if they are strictly 2ε-close to each other.

For a set of lines S, a line `, and δ ≤ ε, we define S`,δ ⊂ S to be the subset of all lines in S that are
strictly δ-close to `. For any two lines `1 and `2, let the closest point Cl`1→`2 be the point on the line `1
which is closest to `2. That is, Cl`1→`2 and Cl`2→`1 is the closest pair of points from the two lines. Note
that the line Cl`1→`2Cl`2→`1 is perpendicular to both `1 and `2.

We also generalize the intersection of a set of lines `1, `2, · · · , `k, to be the smallest ball which touches
all lines. Also, for any collection S = {S1, · · · , St} of subsets of Rd, and another subset C of Rd, we define
their intersection as S ∩C = {S1 ∩C, · · · , St ∩C}. For example, if S is a set of lines and C is a ball, then
the intersection is a set of segments, whereas if C is a sphere then the intersection is a set of points.

3We use N = |L| to denote the total number of lines in the data set, while we use n to denote the number of lines in a specific
recursion level of our algorithms.

4

3 Basic Modules
In this section, we present three modules which will be used several times later in our algorithms.

3.1 Unbounded Module
Intuition: For a set of lines S, this module addresses the case when the query point is far enough from the
“intersection” of the lines. First suppose that all lines in S pass through some point o. Then it is easy to
find the closest line to the query point, as the closest line is the one with the smallest angular distance to the
line ōq. Hence, for an arbitrary value of the radius R, we can build a ANN data structure for the points of
intersections of the lines with the sphere of radius R centered at o, i.e., S ∩ C(o,R). Given the query point
it is enough to project q onto the sphere to get q′ and find the closest point in the ANN data structure.

For the general configuration of lines this intuition translates to the following module. For any set of lines
in S, let C(o, r) be any sphere which intersects all lines in S, i.e., ∀` ∈ S : C(o, r) ∩ ` 6= ∅. We construct
an instance of ANN on the points obtained by intersecting each line with the larger sphere C(o,R), where
R = r

εδ for some value of δ ≤ ε. That is, we construct ANN(S ∩C(o,R), ε). Given any query q outside of
ball B(o,R), let q′ be the projection of q onto the sphere C(o,R). The data structure and query processing
algorithm are shown in Algorithms 1 and 2. Note that the input to Algorithm 1 is the smaller ball.

Let p be the point returned by the ANNS∩C(o,R)(q
′). Also let `p be the line in S which corresponds to

the point p, i.e., p ∈ C(o,R) ∩ `p. Then the following lemma holds.

Algorithm 1 Unbounded Module Data Structure

Input set of lines S
Input B(o, r) which intersects all lines in S
Input parameter δ ≤ ε

1: R← r
εδ

2: P ← ∅
3: for ` ∈ S do
4: Add two intersections of `∩C(o,R) to P
5: end for
6: construct ANN(P, ε)

Algorithm 2 Unbounded Module Query Processing

Input a query point q such that q /∈ B(o,R)
Output a line which is either an approximate clos-
est line to q, or is strictly δ-close to the closest line

1: q′ ← projection of q onto the sphere C(o,R)
2: p← ANNP (q′)
3: `p ← the line in S which corresponds to p
4: Return `p

Lemma 3.1. Let `opt = `∗S be the closest line to q. Then for sufficiently small ε one of the following holds:
either dist(q, `p) is within 1 + O(ε) factor of the closest distance dist(q, `opt), or the closest line `opt is
strictly δ-close to `p.

Proof. The intuition behind the proof is as follows. When the lines extend further than Θ(R) = Θ(rεδ)
from the origin o, if two lines are δ-far from each other, then the distance between them becomes larger
than Θ(Rδ) = Θ(r/ε). This intuitively means that if we translate the lines inside the smaller ball C(o, r)
such that they intersect the origin o, this only changes their distance by a factor of O(r/(r/ε)) = O(ε). So
this translation does not add too much error. Thus we can assume that all lines are crossing the origin o.
In this case projecting the query point on to the ball C(o,R) and computing the approximate point nearest
neighbor on the ball results in an approximate nearest line.

The actual proof is tedious and therefore moved to Appendix A.

Remark 3.2. By Definition 2.1, this module uses space S(m, ε) and has T (m, ε) query time, where m =
2|S| is the total number of points in the ANN data structure.

5

3.2 Net Module
This module is based on sampling points from the lines and uses the samples in an ANN data structure to
find the approximate closest line. We state how the accuracy of the line we find depends on how finely
we sample the lines. This module can only be used for the bounded regions, otherwise it needs infinite
number of points to correctly represent the lines. Here, we only consider the bounded regions which are
balls, because later in our algorithms we build net module for the bounded regions surrounded by balls.

For any set of lines S, let B(o, r) be a ball which intersects each of the lines in S. We build an instance
of ANN as follows. For each line ` ∈ S, let s` = ` ∩ B(o, 2r) be the segment of the line ` which lies
inside the twice larger ball B(o, 2r). We then sample regularly spaced points from the segment s`. The
separation length (the distance of two consecutive samples on the segment) is equal to x, where x is an
arbitrary parameter. Let P be the union of all the samples of the segments. During the preprocessing we
construct ANN(P, ε). Given a query q ∈ B(o, r), we find its approximate nearest neighbor p among the
samples by calling ANNP (q). The data structure and query processing algorithm are shown in Algorithms
3 and 4.

Let `p be the line corresponding to p. Then the following lemma holds.

Algorithm 3 Net Module Data Structure

Input set of lines S
Input B(o, r) which intersects all lines in set S
Input separation parameter x

1: P ← ∅
2: for ` ∈ S do
3: s` ← ` ∩B(o, 2r)
4: Sample the points from s` with separation

x and add them to P .
5: end for
6: construct ANN(P, ε)

Algorithm 4 Net Module Query Processing

Input a query point q such that q ∈ B(o, r)
Output a line which is either an approximate clos-
est line, or its distance to query is at most x/ε

1: p← ANNP (q)
2: `p ← the line in S which corresponds to p
3: Return `p

Lemma 3.3. Let `opt = `∗S be the closest line to q. Then for sufficiently small value of ε, either dist(q, `p) ≤
dist(q, `opt)(1 +O(ε)), or dist(q, `p) < x/ε.

Proof. Suppose that dist(q, `p) ≥ x/ε. Let qopt be the projection of q onto `opt and let popt be the closest
sampled point of `opt to qopt. It can easily be checked that qopt is within the ball B(o, 2r) and therefore
dist(popt, qopt) ≤ x. Then we have that

x/ε ≤ dist(q, `p) ≤ dist(q, p)

≤ dist(q, popt)(1 + ε) (since ANN has chosen p over popt)
≤ [dist(q, qopt) + x](1 + ε) (by triangle inequality)

≤ dist(q, `opt)(1 +O(ε)) (since, by what we just proved in previous line, dist(q, qopt) ≥ x/ε
(1+ε) − x)

and therefore, dist(q, `p) ≤ dist(q, `opt)(1 +O(ε)).

Remark 3.4. By Definition 2.1, the space bound of this module is S(m, ε) and its query time is T (m, ε)
where m = |P | = |S|d4rx e is the total number of points we build the ANN data structure for.

6

3.3 Parallel Module
Intuition: Suppose that all lines in S are parallel. Then it is easy to find the closest line to the query point.
Take an arbitrary hyperplane g which is perpendicular to the lines. Then build an ANN data structure for the
points of intersections of the lines with the hyperplane. Given the query point, it is enough to project q onto
the hyperplane g to get q′. Then find the closest point in the ANN data structure and find the corresponding
line. The following module generalizes this for the case where the lines are not exactly parallel but the case
where all of them are δ-close to some base line `b.

b

b
b

b
b

b

b

b

b

b

h

g

ℓopt

ℓp

q q′

a ah

b
bh

ag

bg

ap

bp

ℓb

b b
b

b

b

b

b

b
b

b

Figure 4: An illustration of Lemma 3.5

Let S be a set of lines, and let the base line `b ∈ S be a line
in the set, such that each line ` ∈ S is δ-close to `b for some
parameter δ ≤ ε. Let g be any hyperplane perpendicular to `b.
Moreover let P denote the set of points which is the intersec-
tion of the lines in S with the hyperplane g. The preprocessing
proceeds by constructing ANN(P, ε). Given the query point
q, we project it on to the hyperplane to get the point q′. We
then use the existing ANN data structure to get an approxi-
mate nearest neighbor p of the point q′. The data structure and
query processing algorithms are shown in Algorithm 5 and 6.

Let `p be the corresponding line to p. We then have the
following lemma.

Algorithm 5 Parallel Module Data Structure

Input set of lines S
Input base line `b ∈ S s.t. all lines in S are δ-
close to `b
Input hyperplane g which is perpendicular to `b

1: P ← ∅
2: for ` ∈ S do
3: Add the point ` ∩ g to the set P .
4: end for
5: construct ANN(P, ε)

Algorithm 6 Parallel Module Query Processing

Input a query point q such that dist(q, g) ≤ Dε/δ
Output a line which is either the approximate clos-
est line, or that dist(q, `p) ≤ D

1: q′ ← Projection of q onto g
2: p← result of ANNP (q′)
3: `p ← the line in S which corresponds to p
4: Return `p

Lemma 3.5. Let `opt = `∗S be the closest line to q in the set S. Then for any value ofD, if dist(q, g) ≤ Dε/δ,
then either dist(q, `p) ≤ dist(q, `opt)(1 +O(ε)), or dist(q, `p) ≤ D.

Proof. Suppose that dist(q, `p) > D, then we prove dist(q, `p) is within (1 + O(ε)) of the optimum. Let
h be the hyperplane parallel to g which passes through q. Let a and b be the closest points on `p and `opt
to q respectively. Let ah, ag, bh, bg be the intersection of the lines `p and `opt with hyperplanes h and g
as shown in Figure 4. Furthermore, let ap, bp be the projections of ah, bh on to the hyperplane g. Since
sin angle(`p, `b) ≤ δ then

dist(ap, ag) = dist(ah, ap)(tan angle(`p, `b)) ≤ Dε/δ ×
δ√

1− δ2
≤ Dε√

1− ε2
≤ 2Dε

7

for sufficiently small value of ε. For the same reason we have dist(bp, bg) ≤ 2Dε. Also we have

dist(q, bh)

dist(q, b)
≤ 1

cos (b̂qbh)
≤ 1√

1− δ2
≤ (1 + ε) (1)

again for sufficiently small value of ε. Now

D < dist(q, a) (by what we assumed)
≤ dist(q, ah) (since a is the closest point on `p to q)
≤ dist(q′, ag) + 2Dε (by triangle inequality and that dist(q, ah) = dist(q′, ap))
≤ dist(q′, ag)(1 +O(ε)) (since by what is already proved in previous line, dist(q′, ag) ≥ D(1− 2ε))
≤ dist(q′, bg)(1 +O(ε)) (since ag is the result of ANN)
≤ [dist(q, bh) + 2Dε](1 +O(ε)) (by triangle inequality and that dist(q, bh) = dist(q′, bp))
≤ dist(q, bh)(1 +O(ε)) (since by what is already proved in previous line, dist(q, bh) ≥ D(1−O(ε)))
≤ dist(q, b)(1 +O(ε)) (by Equation 1)

Therefore, dist(q, `p) is within an (1 +O(ε)) factor away from the optimal distance dist(q, `opt).

Remark 3.6. By Definition 2.1, the space bound of this module is S(m, ε) and its query time is T (m, ε)
where m = |P | = |S| is the total number of points we build the ANN data structure for.

4 General Case of NLS
This section provides a data structure and an algorithm which answers NLS queries in poly-logarithmic
time. The algorithm is recursive. In each level of recursion with input lines S, the algorithm first constructs
T by sampling half of the lines in S and recursively builds a data structure for T . After O(logN) levels of
recursion, the number of lines is small enough to be searched by brute force. At each level with high enough
probability, T contains one of the log n closest lines in S to the query point (where n = |S|). Then we start
with the line returned as answer for T and for log n rounds we try to find a closer line to q. The second step
is called improvement step.

The improvement step is as follows. Suppose the current line ` has distance x to the query point. Then
the closest line is either strictly ε-close to ` or ε-far from `. In the first case, the algorithm makes a call to
Almost Parallel Nearest Line Search (APNLS) which finds the approximate closest line among a set of lines
that are almost parallel. This case will be discussed in Section 6, for which we present an algorithm with
poly-logarithmic time and polynomial space.

In the second case, each line `′ which is closer to q than `, must intersect B(q, x). As we show later,
this means that dist(`, `′) ≤ 2x and that Cl`→`′ is within O(x/ε) of the projection of q on `. Thus we
build a data structure which can retrieve all lines satisfying these two properties using binary search. We
then prove that the closest ball touching all these lines has radius O(x/ε). Given the query point q, if it lies
”far enough” from this ball (that is, outside of a sufficiently larger ball B), then we can solve the problem
using the unbounded module around B. If the query lies inside B, then we can use the net module. The
corresponding line is either an approximate nearest line or its distance to q decreases by a factor of O(ε).
Therefore, at most log n such improvement steps are needed to obtain an approximate nearest line.

The analysis of the algorithms in this section are presented in Section 5

8

4.1 Data Structure
Algorithm 7 shows the preprocessing and the data structure construction procedure of NLS algorithm. The
preprocessing procedure is randomized. First it selects half of the input lines randomly, and builds the same
data structure recursively for the selected lines. Then, for each line ` in the input set S, it sorts the other
lines in S by their distance to `. This will help us later to retrieve the set of lines which are within a distance
at most 2x from the given line `. Let Si be the set of the i lines in S \{`} that are closest to `. The algorithm
sorts the lines in Si based on the position of the point of ` that is closest to them. That is, we orient `
arbitrarily in one of the two ways, and for all lines `′ ∈ Si we sort them based on the position of Cl`→`′
along ` towards the chosen direction. This will help us retrieve all lines whose closest point on ` lies within
some range. Further, let A be any sequence of consecutive lines (an interval) in Si. Let A− be the union of `
and the set of lines in A that are ε-far from `. We then find the smallest ball with a center in ` that intersects
all lines in A−. Denote this ball by B(oA, YA).

We now use the basic modules. First, we build an unbounded module for the set A−, the ball B(oA, YA)
and the parameter ε (note that, this module is used to handle queries outside of the larger ballB(oA, YA/ε

2)).
Second, we build a net module for the same set of lines A− and the larger ball B(oA, YA/ε

2) with the
separation parameter YAε3. Finally, for each line `, we find all lines that are strictly ε-close to it (and
therefore strictly (2ε)-close to each other) and create the APNLS data structure for them as described in
Algorithm 9.

Algorithm 7 NLS Data Structure Construction

Input a set of lines S

1: T ← |S|/2 lines chosen at random from S.
2: Recursively build the NLS data structure for T .
3: for each line ` ∈ S do
4: Sort the lines in S \ {`} based on their distance from ` in a non-decreasing order
5: for i = 1 to |S| − 1 do
6: Si ← the closest i lines to ` in S \ {`}
7: Sort all lines in Si based on the position of the closest point Cl`→`′ on the line `.
8: for each of the

(|Si|
2

)
intervals of lines A do

9: A− ← ` ∪ (all lines `′ ∈ A that are ε-far from `)
10: B(oA, YA)← the smallest ball that intersects all lines in A− and that oA ∈ `
11: UMA ← Build unbounded module for lines in A−, the ball B(oA, YA) and the parameter ε
12: NMA ← Build net module for lines inA−, the ballB(oA, YA/ε

2), and the separation parameter
YAε

3

13: end for
14: end for
15: Build APNLS data structure (described in Section 6) for the set of lines S`,ε
16: end for

Lemma 4.1. The data structure uses (N + d)O(1/ε2) space. (Proof in Appendix B.1)

Lemma 4.2. The data structure can be constructed in time (N + d)O(1/ε2).(Proof in Appendix B.2)

4.2 Query Procedure
Given a query point q, Algorithm 8 describes how to find an approximate nearest line using the aforemen-
tioned data structure. The algorithm first checks whether the problem can be solved by brute force. That

9

is, if the total number of points in the input set S is at most log3N (where N = |L| is the total number of
points in the database), then the algorithm simply computes the distances from the query to all lines in S,
finds the closest line and reports it.

Otherwise, it first runs the procedure recursively for the subset T , and takes the reported line ` as a
starting point. The algorithm performs log |S| improvement steps, replacing the current line with a closer
one. During each iteration, the algorithm first finds the approximately closest line to q among the lines that
are strictly ε-close to `, i.e., S`,ε and stores it in `close. This is done by invoking APNLS(S`,ε, q).

Let x be the distance from the query to the current line ` and let q` be the projection of q onto `. The
algorithm retrieves all potential candidate lines for improvement in the set A. That is, it gets all lines `′

which are no farther than 2x from ` and that the closest point of ` to them, i.e., Cl`→`′ , lies within a distance
of 3x/ε of q`. The algorithm then uses one of the two modules corresponding to the set of lines in A. It
checks whether the unbounded module can be used to retrieve the approximate nearest line among A− to q,
i.e., q /∈ B(oA, YA/ε

2). If so, it uses the module followed by a call to theAPNLS of the found line and sets
the value of `far. Otherwise the point q lies inside the ball B(oA, YA/ε

2) and thus it uses the net module
in order to retrieve a better line and updates the value of `far with it. Note that `far shows the candidate
among the set of lines in A which are ε-far from `. Then at the end of the iteration, the value of ` is updated
with the best of `close and `far if any of them can improve `.

Algorithm 8 NLS Query Processing

Input a set of lines S, and the query point q
Output the approximate nearest line ` ∈ S to the query point q

1: if |S| ≤ log3N then
2: return the nearest line found by the brute force.
3: end if
4: T ← the set of lines sampled during the preprocessing stage
5: `← the result of executing NLS(T, q)
6: for (log |S|) times do
7: `close ← the result of running APNLS(S`,ε, q)
8: x← dist(q, `)
9: q` ← the projection of q on to `

10: Use binary search to find the largest i such that for all lines `′ ∈ Si, we have dist(`′, `) ≤ 2x
11: Use binary search to find the largest interval of lines A in Si, s.t. ∀`′ ∈ A : dist(q`, Cl`→`′) ≤ 3x/ε
12: if A is not empty then
13: if q /∈ B(oA, YA/ε

2) then
14: `r ← result of the unbounded module UMA(q)
15: `far ← the best of `r and APNLS(S`r,ε, q).
16: else
17: `far ← result of the net module NMA(q).
18: end if
19: end if
20: `← the best of ` , `close and `far
21: end for
22: return `

Lemma 4.3. The query processing algorithm runs in time (logN + d+ 1/ε)O(1). (Proof in Appendix B.3)

10

5 Analysis of NLS Algorithm
Definition 5.1. An invocation NLS(L, q) is called successful if it satisfies the following two properties.
First, in all recursive calls involving a set of lines S, at least one of the log |S| closest lines to q are included
in the set T . Second, all calls that the algorithm makes to the subroutine APNLS in any level of recursion
succeeds, i.e., they correctly report an approximate closest line.

Lemma 5.2. The probability that a given invocation is successful is at least 1− 6
logN where N = |L|.

Proof. At any level of recursion with the set of lines S, let us rename the set of lines `1, · · · , `n (with
n = |S|), based on their distance to the query point q, in non-decreasing order. Then since T is a random
subset of size n/2 of the set S, the probability that none of the lines `1, · · · , `logn is sampled in the set T
is at most (1/2)logn = 1/n. That is, with probability at least 1 − 1/n, one of the lines `1, · · · , `logn is in
the set T . By the union bound the probability that this holds in each level of recursion when we run the
algorithm on the set L, is at least

1− 1

N
− 1

N/2
− 1

N/4
− · · · − 1

log3N
≥ 1− 2

log3N

Also in each level of recursion, the algorithm makes at most 2 logN calls to the APNLS subroutine.
By Theorem 6.10, the probability of failure of each call to APNLS is at most 2

log3N
. Since there are

at most logN recursive levels, the total number of times we call APNLS is at most 2 log2N , and thus
the probability that all calls to APNLS are successful is at least 1 − 4 log2N

log3N
. So the probability that the

invocation is successful is at least 1− 2
log3N

− 4
logN ≥ 1− 6

logN .

Lemma 5.3. Suppose that an invocation of NLS(L, q) is successful. Let S be the set of lines at some level
of the recursion and let `∗ = `∗S be the closest line in S to the query point. Then, at the end of each iteration
(improvement step), either ` is an approximate nearest line (dist(q, `) ≤ dist(q, `∗)(1 + cε)), or its distance
to the query q has been decreased by a factor of 4ε.

Proof. First observe that if ` is a (1 + cε)-approximate nearest line at the beginning of the iteration, it will
remain a (1 + cε)-approximate nearest line in all the following iterations as well. This holds since we only
perform an update if the new line improves over `. Suppose that ` is not yet the approximate closest line.
Then one of two cases can occur. The first case is that `∗ is strictly ε-close to the line `. Since we assume
the invocation of the algorithm is successful, the call to APNLS in line 7 correctly finds `close, which is
an approximate closest line (so we should set c ≥ caplnn, where caplnn is defined by Theorem 6.10). Thus `
will be updated with an approximate solution at the end of the iteration and the lemma is proved.

Now suppose that `∗ is ε-far from q. We know that dist(q, `∗) < dist(q, `) = x and therefore by triangle
inequality, dist(`, `∗) ≤ 2x. Thus, by running the binary search in line 10 of the algorithm, we make sure
that `∗ ∈ Si. The following claim proves that the line `∗ is included in the set A that the algorithm finds in
line 11.

Claim 5.4. If `∗ is ε-far from the line `, then dist(Cl`→`∗ , q`) ≤ 3x/ε for sufficiently small value of ε.

Proof. Let q` be the projection of q onto ` and let b be the projection of q onto `∗. Let b` denote the projection
of b onto ` (see Figure 5). It is easy to see that

dist(b, b`) ≤ dist(b, q) + dist(q, `) ≤ 2x (2)

11

Let a = Cl`∗→` and let a` = Cl`→`∗ be its projection on
`, i.e., a and a` are the closest pair on the two lines and
thus the line aa` is perpendicular to both ` and `∗. Let
H and H ′ be the perpendicular hyperplanes to ` which
pass through q and b respectively. Also let `′ denote the
line parallel to `∗ which passes through a` and let b′ be its
intersection with H ′.
Now, suppose that dist(q`, a`) > 3x/ε. Then since
qq` and bb` are perpendicular to `, then we have
dist(b`, q`) ≤ dist(b, q) ≤ x. Hence by triangle inequal-
ity dist(b`, a`) > (3x/ε−x) > 2x/ε. Therefore using the
fact that the two lines are ε-far, we have

b

b

q

qℓ
b

bℓ∗

ℓ

ℓ′
bℓ

b

b′

H ′ H
aℓ

a

x

<
x

b

b

b

b

b

bb

Figure 5: Figure of Claim 5.4

dist(b`, b
′) = dist(a`, b`) tan (b̂`a`b′) >

2x

ε
· ε√

1− ε2
> 2x (3)

Now note that since aa` is perpendicular to `, therefore we have that bb′ is parallel to aa` and that dist(a, a`) =
dist(b, b′). Also since aa` is perpendicular to `∗, it is also perpendicular to `′ and therefore, bb′ is perpendic-
ular to `′. Moreover, since bb′ ∈ H ′, then bb′ is also perpendicular to the projection of line `′ onto H ′. Thus
bb′ is perpendicular to b′b`. Therefore, dist(b, b`) ≥ dist(b`, b

′) > 2x. However this contradicts Equation 2
and thus the claim holds.

Thus the optimal line `∗ is is contained in the set A which is retrieved by the algorithm in line 11 and
therefore A is not empty. Then the following claim completes the proof of the lemma.

Claim 5.5. If `∗ is contained in the set A and is ε-far from `, then `far is either a (1 + cε)-approximate
closest line or its distance to query is at most 4εx.

Proof. If `∗ is in the set A and is ε-far from ` then it is also contained in the set A−. Then one of the
following two cases can occur.

Case 1: q is outside of the ball B(oA, YA/ε
2). In this case, by Lemma 3.1, it suffices to consider two

scenarios. If dist(q, `r) ≤ dist(q, `∗)(1 + c1ε) (where c1 is determined by Lemma 3.1), then `r and thus
`far will be a (1 + c1ε)-approximate nearest line. So we should set c ≥ c1. Second if `∗ is strictly ε-close
to `r, then in this case since we have a successful invocation, APNLS finds an approximate nearest line
and thus `far is a (1 + cε)-approximate closest line. For this we need to set c ≥ caplnn where caplnn is the
determined by Theorem 6.10 . Note that APLNN reports the (1 + caplnnε)-approximate closest line.

Case 2: q is inside the ball B(oA, YA/ε
2). Since oA ∈ `, we get that x = dist(q, `) ≤ dist(q, oA) <

YA/ε
2. Also, by triangle inequality, one can show that the distance of q` to any line `′ ∈ A− is at most

dist(q`, `
′) ≤ dist(q`, Cl`→`′) + dist(Cl`→`′ , `

′) ≤ 3x/ε+ dist(`, `′) ≤ 3x/ε+ 2x ≤ 4x/ε

where we have used the fact that `′ ∈ Si and thus dist(`, `′) ≤ 2x (by the line 10 of the Algorithm 8).
Therefore, since B(q`, 4x/ε) touches all lines in A−, then we have that YA ≤ 4x/ε. Thus, the separation
parameter of the net module is YAε3 ≤ 4xε2. Then by Lemma 3.3 one of the following two cases can occur.
First if dist(q, `far) ≤ dist(q, `∗)(1 + c2ε) (where c2 is determined by Lemma 3.3), then `far is updated
with an approximate solution (so we should set c ≥ c2). On the other hand, if dist(q, `far) < 4xε, then we
are done.

12

Therefore, we update ` with a line which is either a (1 + cε)-approximate closes line or its distance to
query is at most 4εx.

Theorem 5.6. Let L be a set of N lines in Euclidean space Rd. Then for any sufficiently small fixed ε > 0,
there exists a data structure using O(N + d)O(1/ε2) space, and an algorithm that given a query point q,
reports a (1+ cε)-approximate nearest line with probability at least 1− 6

logN in time (d+logN +1/ε)O(1).

Proof. The proof follows from Lemmas 4.3, 4.1, 5.2 and 5.3 and the following argument.
Suppose that we have a successful invocation, which by Lemma 5.2 occurs with probability 1 − 6

logN .
We prove the theorem by induction. At each level of recursion with the set of lines S, one of the log |S|
closest lines in S is sampled in the set T . Denote this line by `logn and let the solution returned by the next
level of recursion (T) be `T . By induction we know that `T is a (1 + cε)-approximate closest line in the set
T , and thus dist(q, `T) ≤ dist(q, `logn)(1 + cε).

Let c = max{c1, 8} where c1 is determined by Lemma 5.3 and let ε < 1/c ≤ 1/8. Also let ` be as
defined in Algorithm 8. Then by the end of the first improvement step, by Lemma 5.3 we have that either `
is a (1 + c1ε)-approximate (and thus (1 + cε)-approximate) closest line in the set S (since c1 ≤ c), or

dist(q, `) ≤ dist(q, `T)4ε ≤ dist(q, `logn)(1 + cε)(4ε) < dist(q, `logn)

So by the end of the first iteration, we have improved not only over the line `T but also on the line `logn. In
the following log |S| − 1 iterations, by Lemma 5.3, if a (1 + c1ε)-approximate line is not found, we have at
least found a line with a closer distance to the query. Since there are at most log n such lines, by the end of
the algorithm we have found a (1 + cε)-approximate nearest line to the query.

6 Almost Parallel Nearest Line Search (APNLS)
This section presents a solution to NLS in the special case where all lines in the input set are almost parallel.
The algorithm is randomized. It starts by splitting the input set of lines into two halves randomly, then its
solves the problem recursively on one of the halves, and uses the solution as the starting line in an iterative
improvement process. Suppose we want to improve over a line ` with distance x to the query point q. To this
end, we identify all lines with distance at most x to the query point in the following way. We partition the
space into ”slabs” using a set of hyperplanes which are perpendicular to `. For each slab there is a unique
ordering of the set of lines by their projective distance from `. This enables the query procedure to identify
all lines within a distance O(x) to ` . Specifically, we sort the lines in each slab based on their projective
distance to ` and for each prefix of those lines we build a separate data structure.

Let B(o, r) be a ball that intersects all lines. Suppose that all lines are δ-close to `. Then (by Parallel
module Lemma 3.5) the required density of parallel modules is proportional to δ. On the other hand, if all
lines are δ-far from `, then by Lemma 3.1 we can find an approximate closest line using the unbounded
module for queries that are farther than r/εδ.

Let ε = δ0 > δ1 > δ2 > · · · > δt be all the sin values of the pairwise angles between the lines. Create a
set of concentric balls B0, B1, B2, · · · , Bt, with radii r

εδ0
, r
εδ1
, · · · , r

εδt
centered at o. Then if the query point

falls between Bj and Bj+1, using unbounded module lemma, we can distinguish between the lines that are
δj-far, returning a line `′. We are left with a set of lines that are strictly δj-close to `′ and therefore δj+1-close
to `′. It now suffices to cover the inner part of Bj+1 with parallel modules with density proportional to δj+1

as opposed to δj . This enables us to bound the space. After finding `′ the algorithm uses the parallel module
to find the approximate nearest line.

13

6.1 Data Structure
The construction procedure for the APLNS data structure is shown in Algorithm 9 . As stated earlier, the
data structure randomly partitions the set of input lines S (with n = |S|) into two halves and builds the data
structure recursively for one of the halves. Then for each line ` in the set S, we build a data structure that
supports an iterative improvement procedure.

Definition 6.1. Let H(`, p) denote the hyperplane perpendicular to a line ` which passes through a point
p . Furthermore, for any sets of points a and b, let distH(a, b) = dist(H ∩ a,H ∩ b) be the distance
between the two sets on the hyperplane H (note that the intersection should not be empty). It is clear that
distH(a, b) ≥ dist(a, b).

To construct the data structure we partition the line ` into the smallest number of segments [o0, o1], [o1, o2],
· · · , [ok−1, ok] with o0 = −∞ and ok = ∞, such that each segment has the strong monotonicity property
defined as follows.

Definition 6.2. We say that a segment [oi, oi+1] has strong monotonicity property for the set of lines S if
the following two properties hold. Suppose that we continuously move a point p ∈ ` from oi to oi+1. The
the distance between any pair of lines on the hyperplane H(`, p) should be monotone. Furthermore, the
ordering of the distances from the lines in S to ` on the hyperplane H(`, p) should remain constant. That is,
for any `1, `2 ∈ S, either it is always the case that distH(`,p)(`, `1) ≥ distH(`,p)(`, `2), or it is always the
case that distH(`,p)(`, `1) ≤ distH(`,p)(`, `2).

Lemma 6.3. There exists a partitioning with at most O(n2) segments.

Proof. For simplicity suppose that ` is identified with the X-axis. Given two lines `1 and `2 which are
strictlyO(ε)-close to theX-axis, let p1(x) and p2(x) be the points on `1 and `2 with theirX-coordinate equal
to x. Clearly the other coordinates of p1(x) and p2(x) can be written as a linear function of x, and therefore
the distance between the two lines is of the form D(x) =

√
ax2 + bx+ c, with the derivative D′(x) =

ax+b
2
√
ax2+bx+c

. Therefore it is enough to partition ` according to the roots of (ax + b) and (ax2 + bx + c).
This contributes at most three segment splits per each pair of lines.

As for for the second property, it is enough to find the roots of the equation D`,`1(x) − D`,`2(x) = 0,
which is of the form

√
ax2 + bx+ c −

√
a′x2 + b′x+ c′ = 0. Clearly the equation has at most four roots.

Therefore the total number of required segments is at most 7
(
n
2

)
≤ 4n2.

It suffices now to build a data structure for each segment [om, om+1]. We sort the lines based on their distance
to ` on the hyperplane H(`, p) for an arbitrary p ∈ [om, om+1]. Note that this ordering is well-defined and
does not depend on the choice of p because of the strong monotonicity property (so we just let p = om).
Then for each prefix Si of lines with respect to this order, we proceed as follows. First, since the value
of distH(`,p)(`, `i) is either increasing or decreasing as a function of p ∈ [om, om+1], its value achieves
minimum at either om or om+1. Denote the minimizer endpoint by o. Second, for all other lines `′ ∈ Si, we
have distH(`,o)(`, `

′) ≤ distH(`,o)(`, `i). Therefore, the ball B(o, r) intersects all lines in the prefix set Si,
where r = distH(`,o)(`, `i).

We describe now how to create the modules. Let δ0 > δ1 > · · · > δt > δt+1 be the set of the sin values
of all pairwise angles between the lines in Si. Also we add the extra condition that δ0 = ε and δt+1 = 0,
and we ignore those values that are not between 0 and ε. Note that the total number of such angles is at most
t ≤ n2. We then define a set of radii, corresponding to the angles as follows. Let Rj = r/(εδj) for all j ≤ t
and consider the set of concentric balls B(o,Rj). First, we build a net module for the ball B(o,R0) for the

14

Algorithm 9 APNLS Data Structure

Input a set of lines S that are strictly (2ε)-close to each other

1: T ← half of the lines in S chosen randomly.
2: Recursively build the APLNN data structure for T .
3: for ` ∈ S do
4: Partition ` into segments [o0 = −∞, o1], [o1, o2], · · · , [ok−1, ok = ∞] , s.t. each segment has strong

monotonicity property.
5: for 0 ≤ m ≤ k − 1 do
6: sort all lines `′ ∈ S by distH(`,om)(`, `

′) in a non-decreasing order
7: for i = 1 to |S| do
8: Si ← the first i lines in S
9: o← arg mino∈{om,om+1} distH(`,o)(`, `i)

10: r ← distH(`,o)(`, `i)
11: let δ0 > δ1 > · · · > δt > δt+1 = {δ < ε | ∃ `′, `” ∈ Si, δ = sin angle(`′, `”)} ∪ {0, ε} be the

sin values (between 0 and ε) of the pairwise angles.
12: ∀ 0 ≤ j ≤ t : Rj ← r

εδj

13: NM0 ← Build the net module for Si , the ball B(o,R0), and separation rε2

14: for 1 ≤ j ≤ t+ 1 do
15: UMj−1 ← Build the unbounded module for lines Si and ball B(o, r), and parameter δj−1
16: for `′ ∈ Si do
17: if j = t+ 1 then
18: Let G`′,j be the two hyperplanes perpendicular to `′ at positions `′ ∩ C(o,Rj−1).
19: else
20: LetG`′,j be a set of hyperplanes perpendicular to `′ with separationRjε3 , on the segment

`′ ∩B(o, 2Rj).
21: end if
22: for each hyperplane g ∈ G`′,j do
23: PM`′,g ← Parallel Module for the set of lines (Si)`′,δj−1

, base line `′, and hyperplane g
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for

set of lines Si and with separation parameter Rε2. Then for each j ≤ t, we create an unbounded module
UMj for the ball B(o, r), the set of lines Si and parameter δj .

Consider any line `′ ∈ Si and each 1 ≤ j ≤ t. We create a set of Parallel modules such that given a
query inside the ball B(o,Rj), it can distinguish between the set of lines that are δj-close to `′. Note that
since there are no other angles between δj and δj−1, it means that this set of lines is equal to the set of lines
that are strictly δj−1-close to `′, i.e., (Si)`′,δj−1

. We take a set of regularly spaced hyperplanes perpendicular
to `′, separated by Rjε3, that cover the part of `′ that lies inside the slightly larger ball B(o, 2Rj). Note, that
for j = t + 1 this means that, all lines in (Si)`′,δj−1

are 0-close, i.e., parallel, to `′. Therefore it is enough
to have only one hyperplane perpendicular to `′ in order to find the approximate nearest line among them.

15

For each such hyperplane g, we build a Parallel module on the set of lines (Si)`′,δj−1
, base line `′ and the

hyperplane g.

Lemma 6.4. The data structure for a set of lines L′ ⊂ L uses (|L′| + d)O(1/ε2) space. (Proof in Appendix
B.4)

Lemma 6.5. The data structure for a set of lines L′ ⊂ L can be constructed in time (|L′|+d)O(1/ε2). (Proof
in Appendix B.5)

6.2 Query Procedure
The query procedure of APNLS is sketched in Algorithm 10. The algorithm proceeds as follows. Given
the query point q, it first checks whether the problem can be solved by brute force. That is, if the total
number of points in the input set S is at most log3N , where N = |L| is the total number of points in the
database. Then it computes the distance of the query to all lines in S, finds the closest line and reports it.

Otherwise, it first solves the problem on the half of lines T , for which a data structure has been con-
structed. Let ` be the approximate nearest line in the sampled set T . The algorithm starts with ` and keeps
improving it so that the distance from the query to ` in each of the log |S| iterations decreases until an ap-
proximate closest line is found. Since the probability that one of the log |S| closest lines to q have been
sampled in the set T is at least 1−1/|S|, log |S| iterations are sufficient to find the approximate nearest line.

The improvement step is as follows. Let x be the distance from q to the line ` and let q` be the projection
of q onto the line `. Then using binary search we find the segment [om, om+1] that q` falls into and proceed
to the corresponding data structure. As the optimum line should have distance less than x to the query point,
its distance to ` is at most 2x and its distance to ` on the hyperplane H(`, q`) should be at most 3x. Note
that, because of the strong monotonicity property, the ordering of the lines inside the interval [om, om+1] is
constant. Therefore we can use binary search to retrieve all lines Si that have distance at most 3x from ` on
the hyperplane H(`, q`). Let o be the endpoint of the segment (either om or om+1) for which the distance
between `i and ` is minimized on the hyperplane H(`, o), and denote this distance by r = distH(`,o)(`, `i).

Now the following two cases can occur. If q is inside the smallest ball B(o,R0), then we use the net
module NM0 and update the line. Otherwise we find the largest j ≤ t such that q is outside of the ball
B(o,Rj). We use the unbounded module UMj to get the line `um. Then we know that either `um is
an approximate nearest line or the nearest line is strictly δj-close to `um, or equivalently δj+1-close to it.
Therefore we get the closest hyperplane g ∈ G`um,j+1, and use the corresponding Parallel module to find
the line `pm. We update ` with this line `pm (if it provides an improvement). Finally, after all iterations, we
report the line ` as the approximate nearest line. Figure 6 shows an example of the data structure and the
query point.

Lemma 6.6. The query processing algorithm on the set L′ ⊂ L runs in time (log |L′|+d+1/ε)O(1). (Proof
in Appendix B.6)

6.3 Analysis of APNLS Algorithm
Definition 6.7. An invocation APNLS(L′, q) (for L′ ⊂ L) is called successful if in all recursive calls
involving a set of lines S, at least one of the log |S| closest lines to q is included in the set T .

Lemma 6.8. The probability that a given invocation on set L′ ⊂ L is successful is at least 1− 2
log3N

where
N = |L| ≥ |L′|.
Proof. Consider any level of recursion with the set of lines S. Without the loss of generality we can assume
that those lines `1, · · · , `n, n = |S|, are order based on their distance to the query point q, in a non-
decreasing order. Since T is a random subset of the set S of size n/2, the probability that none of the lines

16

Algorithm 10 APNLS Query Processing

Input a set of lines S that are strictly 2ε-close to each other, and the query point q
Output the approximate nearest line ` ∈ S to the query point q

1: if |S| ≤ log3N then
2: return the nearest line found by the brute force.
3: end if
4: T ← the set of lines sampled during the preprocessing stage.
5: `← the result of executing APNLS(T, q)
6: for (log |S|) times do
7: x← dist(q, `)
8: q` ← the projection of q onto `.
9: Use binary search to find the segment [om, om+1] containing q`.

10: Use binary search to find the largest i such that for all lines `′ ∈ Si, we have distH(`,q`)(`
′, `) ≤ 3x

11: o← arg mino∈{om,om+1} distH(`,o)(`, `i)
12: r ← distH(`,o)(`, `i)
13: if q ∈ B(o,R0) then
14: `← the best of ` and `nm, where `nm = NM0(q) is the output of the net module.
15: else
16: j ← the largest value in the set {0, 1, · · · , t} such that q /∈ B(o,Rj)
17: `um ← the output of UMj(q)
18: g ← the closest hyperplane to q in the set G`um,j+1

19: `pm ← the result of PM`um,g(q)
20: update ` with the best of ` and `pm
21: end if
22: end for
23: return `

`1, · · · , `logn is included in the set T is at most (1/2)logn = 1/n. That is, with probability at least 1− 1/n,
one of the lines `1, · · · , `logn is in the set T . By the union bound, the probability that this holds in each level
of the recursion when we run the algorithm on the set L′ is at least

1− 1

|L′| −
1

|L|/2 −
1

|L′|/4 − · · · −
1

log3N
≥ 1− 1

N
− 1

N/2
− 1

N/4
− · · · − 1

log3N
≥ 1− 2

log3N

Lemma 6.9. Suppose that the invocation of the APNLS(L′, q) is successful for L′ ⊂ L. Let S be the set
of lines at some level of the recursion and let `∗ = `∗S be the closest line in S to the query point. Then by
the end of each iteration, either, ` is an approximate nearest line (dist(q, `) ≤ dist(q, `∗)(1 + cε)), or its
distance to the query q has been decreased by a factor of 3ε.

Proof. First observe that if ` is a (1 + cε)-approximate nearest line at the beginning of the iteration, it will
remain a (1 + cε)-approximate nearest line in the following iterations as well. This is because we only
perform an update if the new line improves over `. Suppose that ` is not yet the approximate closest line.

Since dist(q, `) = x , we know that dist(q, `∗) ≤ x and therefore we have dist(q`, `
∗) ≤ 2x. Hence,

since ` and `∗ are strictly 2ε-close to each other, we have that distH(`,q`)(`, `
∗) ≤ 2x√

1−4ε2 ≤ 3x for suffi-
ciently small value of ε. Therefore, the set of lines Si that we retrieve in line 10 contains the optimal line `∗.

17

Furthermore, the value of distH(`,p)(`, `i) increases as we distance p from o inside the segment [om, om+1].
Specifically for p = q`, it means that r ≤ 3x.

Now, if q ∈ B(o,R0), then by the net module Lemma 3.3 one of the two cases can occur. The first case
occurs if dist(q, `nm) ≤ dist(q, `∗)(1 + c1ε) (where c1 is defined by Lemma 3.3), which means that the
value ` is updated with the approximate nearest line and thus the algorithm reports the approximate nearest
line (we should just set c ≥ c1). The second case occurs if dist(q, `nm) ≤ rε2/ε ≤ 3xε, which means that
we have reduced the distance dist(q, `) by a factor of 3ε.

Otherwise, we are using the unbounded module of UMj . This means that by Lemma 3.1, either
dist(q, `um) ≤ dist(q, `∗)(1 + c2ε) (where c2 is determined by Lemma 3.1), or `∗ ∈ (Si)`um,δj , i.e. the op-
timal line is strictly δj-close to the line `um. However, in both cases we know that there exists a line `′ (`um
in the first case and `∗ otherwise) that is strictly δj-close to `um and that dist(q, `′) ≤ dist(q, `∗)(1 + c2ε).
Since there is no other pairwise angle α such that δj+1 < sinα < δj , it means that `′ is δj+1-closet
to `um. Now, note that if j = t, then the set (Si)`um,δj are all parallel to `um, and therefore, using
any Parallel module perpendicular to `um returns an approximate nearest line with approximation factor
(1 + c2ε)(1 + ε) ≤ (1 + (c2 + 2)ε). Thus, we have c ≥ c2 + 2.

Otherwise if j < t, we use Lemma 3.5 to prove the correctness of the algorithm. Taking into account
that q ∈ B(o,Rj) and that the hyperplanes cover the range of the `um∩B(o, 2Rj), we have that q lies inside
these hyperplanes and thus its distance to the closest hyperplane is at most Rε3 = rε2

δj
and therefore Lemma

3.5 applies. Using the lemma one can see that either dist(q, `pm) ≤ dist(q, `′)(1 + c3ε) ≤ dist(q, `∗)(1 +
(c2 + c3 + 1)ε) (where c3 is defined by Lemma 3.5), in which case by the end of the iteration ` is an
approximate nearest line (we should set c ≥ c2 + c3 + 1), or dist(q, `pm) ≤ rε ≤ 3xε which means that we
have decreased the value of dist(q, `) by a factor of 3ε.

Theorem 6.10. Let L′ ⊂ L be a set of lines in Euclidean space Rd that are almost parallel. Then for any
sufficiently small fixed ε > 0, there exists a data structure using O(|L′|+ d)O(1/ε2) space, and an algorithm
that given a query point q, reports a (1 + cε)-approximate nearest line with probability at least 1 − 2

log3N

in time (d+ log |L′|+ 1/ε)O(1).

Proof. The proof follows from Lemmas 6.6, 6.4, 6.8 and 6.9 and the following argument which is analogous
to the proof of Theorem 5.6

Suppose that we have a successful invocation (which by Lemma 6.8 happens with probability 1− 2
log3N

).
Then we prove the theorem by induction. At each level of recursion with the set of lines S, one of the log n
(where n = |S|) closest lines in S is included in the set T . Let this line be `logn and let the solution returned
by the next level of recursion (T) be `T . By induction we know that `T is a (1 + cε)-approximate closest
line in the set T , and thus dist(q, `T) ≤ dist(q, `logn)(1 + cε).

Let c = max{c1, 6} where c1 is determined by Lemma 6.9 and let ε < 1/c ≤ 1/6. Also let ` be as
defined in Algorithm 10. Then by the end of the first improvement step, by Lemma 6.9 we have that either
` is a (1 + c1ε)-approximate (and thus a (1 + cε)-approximate) nearest line in the set S or

dist(q, `) ≤ dist(q, `T)3ε ≤ dist(q, `logn)(1 + cε)(3ε) < dist(q, `logn)

So by the end of the first iteration, we have improved not only over the line `T but also over the line `logn.
In the following log n − 1 iterations, by Lemma 6.9, if a (1 + c1ε)-approximate line is not found, we have
found at least a line with a closer distance to the query. Since there are at most log n such lines, by the end
of the algorithm we have found a (1 + cε)-approximate nearest line to the query.

18

b b

o = om Om+1

B(o, r)

B(o, r
ǫ2)

B(o, r
ǫδ1
) B(o, r

ǫδ2
)

b
q

lum

lpm

b

b

b

b
b

b
b b

bb
b

b

b b b b b b

b

b

g

b b b b
om−1

Figure 6: Example: There are only three lines with sin values of 2ε, δ1 and δ2. B(o, r) touches all lines.
The red dots show some of the sampled points in the net module inside B(o, r/ε2). The blue dots on the
ball B(o, r/ε2) show some of the points in the unbounded module UM0 which is used for the query point
q. Suppose that the output of this module is `um. Then we take the closest hyperplane g to q which is
perpendicular to `um. The points of the parallel module on g are depicted by green dots. The output of the
parallel module is denoted by `pm. Note that not all the hyperplanes are shown in the picture.

7 Acknowledgements
The results were developed in joint work with Piotr Indyk and the author would like to thank him for his
contribution and several discussions and suggestions on this work.
The author would also like to thank Maryam Aliakbarpour, Arturs Backurs, Mohsen Ghaffari, Ilya Razen-
shteyn, and Ali Vakilian for useful comments and feedbacks on this paper.

References
[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss trans-

form. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
557–563. ACM, 2006.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pages 459–468. IEEE, 2006.

[3] A. Andoni, P. Indyk, R. Krauthgamer, and H. L. Nguyen. Approximate line nearest neighbor in high
dimensions. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 293–301. Society for Industrial and Applied Mathematics, 2009.

[4] A. Andoni, P. Indyk, H. L. Nguyen, and I. Razenshteyn. Beyond locality-sensitive hashing. Proceed-
ings of the twenty-fifth ACM-SIAM Symposium on Discrete Algorithms, 2014.

[5] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. In Pro-
ceedings of the 43rd annual ACM symposium on Theory of computing, pages 579–586. ACM, 2011.

19

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching. In Proceedings of the fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 573–582. Society for Industrial and Applied Mathematics, 1994.

[7] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search with applications to
pattern recognition. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE, 2007.

[8] A. Chakrabarti and O. Regev. An optimal randomised cell probe lower bound for approximate nearest
neighbour searching. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 473–482. IEEE, 2004.

[9] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry,
pages 253–262. ACM, 2004.

[10] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In focs, volume 1, pages 94–103,
2001.

[11] P. Indyk. Nearest neighbors in high-dimensional spaces. 2004.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimension-
ality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613.
ACM, 1998.

[13] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages 599–608. ACM, 1997.

[14] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 798–807. Society for
Industrial and Applied Mathematics, 2004.

[15] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high
dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[16] A. Magen. Dimensionality reductions that preserve volumes and distance to affine spaces, and their
algorithmic applications. In Randomization and approximation techniques in computer science, pages
239–253. Springer, 2002.

[17] R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 1186–1195. ACM, 2006.

[18] H. Samet. Foundations of multidimensional and metric data structures. Morgan Kaufmann, 2006.

[19] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-neighbor methods in learning and vision. IEEE
Transactions on Neural Networks, 19(2):377, 2008.

20

A Proof of Lemma 3.1
We start by defining a set of notations as shown in Figure 7. Let rq = dist(q, o) be the distance of the query
point to the center of the balls o, and let q′ be the projection of q on to the sphere C(o,R). Let p be the
point returned by the ANN and let `p be the corresponding line to p. Let u be the intersection of `p with
the sphere C(o, rq) such that both p and u fall on the same side of C(o, r). Also let `opt denote the actual
closest line to the query point q and let s and t be its intersection with C(o,R) and C(o, rq) respectively.
Furthermore, let `′p and `′opt be the lines parallel to `p and `opt that pass through the origin, and let p′, s′,
u′, t′ be their intersections with spheres C(o,R) and C(o, rq). Finally, let α1 = q̂ou′, α2 = q̂ot′ be the
angles between the line oq and the lines `p and `opt and let α = û′ot′ be the angle between `p and `opt (or
equivalently between `′p and `′opt).

Note that we can always choose t (and therefore the corresponding s, t′ and s′) such that α2 ≤ π/2. It
is easy to see that this holds for `p approximately, i.e., α1 ≤ 2π/3 for small enough ε, otherwise the ANN
would have chosen the other point of the intersection `p ∩ C(o,R) instead of choosing p.

b

b
b

b

b

b

b

b

b

b

b

C(o, rq)

C(o, R)

C(o, r)

lp

lopt

p
p′

o
q′

s

s′

u

u′

t

t′

qα1

α2

l′p

l′opt

b

b

b

b

b

b

b

b
b

b

b

Figure 7: Figure of Lemma 3.1

We assume that `opt is δ-far from `p, and prove that dist(q,`p)
dist(q,`opt)

≤ (1 + O(ε)). We achieve this via the
following sequence of steps:

dist(q, `p)

dist(q, `opt)
≤

dist(q, `′p)

dist(q, `′opt)
(1 +O(ε)) (by Lemma A.2)

≤ dist(q, u′)

dist(q, t′)
(1 +O(ε)) (by Lemma A.5)

≤ dist(q′, p′)

dist(q′, s′)
(1 +O(ε)) (immediate)

≤ (1 +O(ε)) (by Lemma A.6)

Let us start by the following observation

21

Observation A.1. dist(p, p′) ≤ 2r, (and similarly dist(u, u′),dist(s, s′), dist(t, t′) ≤ 2r).

Proof.

dist(p, p′) = 2R sin (
p̂op′

2
) ≤ 2R sin (p̂op′) ≤ 2r

Lemma A.2. dist(q,`p)
dist(q,`opt)

≤ dist(q,`′p)

dist(q,`′opt)
(1 +O(ε))

Proof. Since the distance between the two pairs of parallel lines is at most r, by triangle inequality

dist(q, `p)

dist(q, `opt)
≤

dist(q, `′p) + r

dist(q, `′opt)− r

The following two claims prove that the value r in the numerator and denominator does not affect the ratio
significantly.

Claim A.3. dist(q, `′p) ≥ r
3ε for sufficiently small value of ε.

Proof. By definition, dist(q, `opt) ≤ dist(q, `p) and therefore by triangle inequality

dist(q, `′opt) ≤ dist(q, `opt) + r ≤ dist(q, `p) + r ≤ dist(q, `′p) + 2r (4)

Furthermore,

dist(q, `′p) + dist(q, `′opt) = dist(q, u′) cos (α1/2) + dist(q, t′) cos (α2/2)

≥ dist(q, u′)/2 + dist(q, t′)/2 (since α1, α2 ≤ 2π/3)
≥ dist(t′, u′)/2 (by triangle inequality)

≥ rq sinα ≥ R sinα ≥ r

εδ
δ ≥ r/ε (noting that `′p and `′opt are δ-far)

Therefore, using Equation 4 we can infer that dist(q, `′p) + 2r + dist(q, `′p) ≥ r/ε and thus dist(q, `′p) ≥
r/(3ε) for sufficiently small value of ε.

Claim A.4. dist(q, `′opt) ≥ r
8ε for sufficiently small value of ε.

Proof. Suppose that, to the contrary, we have dist(q, `′opt) <
r
8ε . Then

dist(q, t′) = dist(q, `′opt)/ cos (α2/2) ≤ 2dist(q, `′opt) ≤
r

4ε

and thus, dist(q′, s′) ≤ r
4ε . However, this means that firstly, by triangle inequality and Observation A.1, and

for sufficiently small ε

dist(q′, s) ≤ dist(q′, s′) + dist(s, s′) ≤ r

4ε
+ 2r ≤ 3r

8ε

and secondly

dist(q′, p′) ≥ dist(p′, s′)− dist(q′, s′) ≥ R sinα− r

4ε
≥ 3r

4ε
(since `p and `opt are δ-far)⇒

22

dist(q′, p) ≥ dist(q′, p′)− dist(p′, p) ≥ 3r

4ε
− 2r ≥ 2r

3ε

which is a contradiction because ANN have chosen p over s and therefore it must be true that dist(q′, p) ≤
dist(q′, s)(1 + ε), however we just proved that dist(q′, p) is larger than dist(q′, s) by a constant factor. This
is a contradiction for sufficiently small value of ε. Therefore the claim holds.

Using the above two claims, we have

dist(q, `p)

dist(q, `opt)
≤

dist(q, `′p) + r

dist(q, `′opt)− r
≤

dist(q, `′p)(1 +O(ε))

dist(q, `′opt)(1−O(ε))
≤

dist(q, `′p)

dist(q, `′opt)
(1 +O(ε))

Lemma A.5. dist(q,`′p)

dist(q,`′opt)
≤ dist(q,u′)

dist(q,t′) (1 +O(ε))

Proof.
dist(q, `′p)

dist(q, `′opt)
=

dist(q, u′) cos (α1/2)

dist(q, t′) cos (α2/2)

Therefore it is enough to prove cos (α1/2)
cos (α2/2)

≤ (1 +O(ε)). As proved earlier in Equation 4

dist(q, `′opt) ≤ dist(q, `′p) + 2r ⇒
rq sinα2 ≤ rq sinα1 + 2r ⇒
sinα2 − sinα1 ≤ 2εδ ⇒
(sinα2 − sinα1)(sinα2 + sinα1) ≤ 4εδ ⇒
cos2 α1 − cos2 α2 ≤ 4εδ ⇒
(cosα1 − cosα2)(cosα1 + cosα2) ≤ 4εδ

Note that if α2 ≤ α1, the bound on the ratio trivially holds. Otherwise, it is enough to prove that

cos (α1/2)

cos (α2/2)
=

√
1 + cosα1

1 + cosα2
≤ 1 + cosα1

1 + cosα2
≤ 1 +O(ε)

Now since α1 ≤ α2 ≤ π/2, then cosα1 + cosα2 ≥ 0. Therefore

cosα1 − cosα2 ≤
4εδ

cosα1 + cosα2

Now one of the two cases can occur. First, if (cosα1 + cosα2) ≤ δ then since 0 ≤ cosα2 ≤ cosα1 ≤ 1
and their sum is at most δ, then it means that their difference is also at most δ , i.e., cosα1− cosα2 ≤ δ ≤ ε.
Second if (cosα1 + cosα2) > δ, then cosα1 − cosα2 ≤ 4εδ

δ ≤ 4ε. Therefore in both cases we have that
cosα1 − cosα2 ≤ 4ε and thus

1 + cosα1 ≤ 1 + cosα2 + 4ε⇒
1 + cosα1

1 + cosα2
≤ 1 +

4ε

1 + cosα2
≤ 1 + 4ε

23

Lemma A.6. dist(q′,p′)
dist(q′,s′) ≤ (1 +O(ε))

Proof. First note that

dist(q′, p′)

dist(q′, s′)
≤ dist(q′, p) + dist(p, p′)

dist(q′, s)− dist(s, s′)
≤ dist(q′, p) + 2r

dist(q′, s)− 2r

Claim A.7. dist(q′, s) ≥ r
2ε(1−O(ε))

Proof.

dist(q′, p) + dist(q′, s) ≥ dist(q′, p′)− dist(p, p′) + dist(q′, s′)− dist(s, s′) (by triangle inequality)
≥ dist(p′, s′)− 4r (by triangle inequality and Observation A.1)

≥ R sinα− 4r ≥ r/ε− 4r ≥ r

ε
(1−O(ε))

Also since the result of calling ANN is p, it means that dist(q′, p) ≤ dist(q′, s)(1 + ε) and therefore

dist(q′, s)(2 + ε) ≥ dist(q′, p) + dist(q′, s) ≥ r

ε
(1−O(ε)) ⇒

dist(q′, s) ≥ r

2ε(1 +O(ε))
(1−O(ε)) ≥ r

2ε
(1−O(ε))

Using the above claim and the fact that ANN has chosen p over s, i.e., dist(q′, p) ≤ dist(q′, s)(1 + ε),
we have

dist(q′, p) + 2r

dist(q′, s)− 2r
≤ dist(q′, s)(1 + ε) + 2r

dist(q′, s)− 2r
(Since ANN has chosen p over s)

≤ 1 + ε+ 2r/dist(q′, s)

1− 2r/dist(q′, s)

≤ 1 + ε+ 4ε/(1−O(ε))

1− 4ε/(1−O(ε))
(by Claim A.7)

≤ 1 +O(ε)

B Time and Space Analysis
B.1 Proof of Lemma 4.1
Proof. First of all we need O(Nd) space to store the lines. At each step of the recursion with n = |S|
points, there are a total of n candidates for ` and for each of them there are at most n different Si. For each
Si there areO(n2) intervalsA. For any suchA, the space used by the unbounded module is at most S(2n, ε)

(Remark 3.2), and the space used by the net module is at most S(n4YA/ε
2

YAε3
, ε) = S(4n/ε5, ε) (Remark 3.4).

Therefore the total space used is O(n4S(4n/ε5, ε)). Moreover, as will be proved later in Lemma 6.4, the
space needed to build the APNLS data structure for each set is O(n7/ε3×S(n, ε)) and since we call it for
each line ` ∈ S, the total space used at each level of recursion is O(n4S(4n/ε5, ε) + n8/ε3 × S(n, ε)). The
recursion formula for the space at each level of recursion is

S(n) ≤ S(n/2) + n4S(4n/ε5, ε) +O(n8/ε3 × S(n, ε))

and therefore, the total space used by the algorithm isO(N4S(4N/ε5, ε)+N8/ε3×S(N, ε)). Since S(N, ε)
is of the form O(N + d)O(1/ε2), therefore the lemma holds.

24

B.2 Proof of Lemma 4.2
Proof. First note that each computation takes O(d) time. As in the previous lemma, there are n4 candi-
dates for A, where n = |S|. For each such A, the smallest ball B(oA, YA) can be found using sweep-
line technique in O(n2 log n) time (the sweep proceeds along the line ` and the squared distance to other
lines have quadratic form). Therefore using the same arguments as the previous lemma, the construction
time is O(dN6 logN + N4CT (4N/ε5, ε)). Since the construction time of the APNLS by Lemma 6.5 is
O(N7/ε3 × CT (n, ε)), the total construction time of NLS is O(N4CT (4N/ε5, ε) + N8/ε3 × CT (N, ε))
which given that CT (N, ε) = O(N + d)O(1/ε2), it is of the form (N + d)O(1/ε2).

B.3 Proof of Lemma 4.3
Proof. First note that each computation takes O(d) time. Also note that in the whole execution of the NLS
algorithm, we call the APNLS at most 2 log2N times (2 logN times per recursion level). Therefore the
total running time of APNLS by Lemma 6.6 is at most

O(d log5N + log4N × T (4N/ε4, ε))

Now, at a recursion level with n lines (n = |S|), if we have n ≤ log3N , the the running time is d log3N .
Otherwise, the longest path of the execution of the algorithm consists of log n iterations and for each of them
we run the net module which by Remark 3.4 takes T (4n/ε5, ε) time. The recursion formula for the running
time at each level of recursion is

T (n) ≤ T (n/2) + log n× T (4n/ε5, ε), T (log3N) = d log3N

and therefore since T (4n/ε5, ε) is poly-logarithmic in n and polynomial in 1/ε and d, the total running time
of this part is

d log3N + log2N × T (4N/ε5, ε)

Therefore the total running time is

O(d log5N + log4N × T (4N/ε4, ε) + log2N × T (4N/ε5, ε))

Since T (N, ε) is of the form (logN + d+ 1/ε)O(1), the lemma holds.

B.4 Proof of Lemma 6.4
Proof. Consider the data structure for L′ ⊂ L. At each step of the recursion with n lines, there are a
total of n candidates for ` and for each of them at most O(n2) segments and for each of the segments,
there are n different Si. For each Si there are at most O(n2) different values of δj . For each of them,
the unbounded module uses space S(2n, ε) (by Remark 3.2). Also for each such δj and each line `′, the
number of hypeplanes |G`′,j | is at most 4Rj

Rjε3
= O(1/ε3). For each such hyperplane, we build a parallel

module with at most n lines. Therefore the total space of each step of recursion (using Remark 3.6) will be
O(n7/ε3 × S(n, ε)). The recursion formula for the space at each level of recursion is

S(n) ≤ S(n/2) + 4n7/ε3 × S(n, ε)

and therefore, the total space used by the algorithm is O(|L′|7/ε3 × S(|L′|, ε)). Note that for storing the
lines we can useO(|L′|d) space or just use the |L′| pointers to the lines stored globally. Now since S(|L′|, ε)
is of the form O(|L′|+ d)O(1/ε2), the space of this data structure is of this form as well.

25

B.5 Proof of Lemma 6.5
Proof. The same as the previous lemma, one can show that it takes O(|L′|7/ε3 × CT (|L′|, ε)). Thus the
total construction time is of the form (|L′|+ d)O(1/ε2).

B.6 Proof of Lemma 6.6
Proof. First note that each computation takes O(d) time. At each step of the recursion with n lines, if we
have n ≤ log3N , the the running time is O(d log3N). Otherwise, the longest path of the execution of the
algorithm consists of log n iterations and for each of them we run the net module which by Remark 3.4
takes 4R0n

rε2
= O(n/ε4). Therefore, the total time taken is log n × T (4n/ε4, ε). The recursion formula for

the running time at each level of recursion is

T (n) ≤ T (n/2) + log n× T (4n/ε4, ε), T (log3N) = log3N

and therefore since T (n/ε4, ε) is poly-logarithmic in n and polynomial in 1/ε, the total running time of the
algorithm is O(d log3N + log2 |L′| × T (4|L′|/ε4, ε)) = O(d log3N + log2N × T (4N/ε4, ε)) which is
poly-logarithmic in N and polynomial in 1/ε and d.

26

	Introduction
	Overview of the Algorithms

	Definitions
	Basic Modules
	Unbounded Module
	Net Module
	Parallel Module

	General Case of NLS
	Data Structure
	Query Procedure

	Analysis of NLS Algorithm
	Almost Parallel Nearest Line Search (APNLS)
	Data Structure
	Query Procedure
	Analysis of APNLS Algorithm

	Acknowledgements
	Proof of Lemma 3.1
	Time and Space Analysis
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 6.4
	Proof of Lemma 6.5
	Proof of Lemma 6.6

